Sodamhan.com

TL;DR

bq

A Python-based tool for BigQuery, Google Cloud’s fully managed and completely serverless enterprise data warehouse. More information: https://cloud.google.com/bigquery/docs/reference/bq-cli-reference.

  • Run query against a BigQuery table using standard SQL, add --dry_run flag to estimate the number of bytes read by the query:

bq query --nouse_legacy_sql 'SELECT COUNT(*) FROM DATASET_NAME.TABLE_NAME'

  • Run a parameterized query:

bq query --use_legacy_sql=false --parameter='ts_value:TIMESTAMP:2016-12-07 08:00:00' 'SELECT TIMESTAMP_ADD(@ts_value, INTERVAL 1 HOUR)'

  • Create a new dataset or table in the US location:

bq mk --location=US dataset_name.table_name

  • List all datasets in a project:

bq ls --filter labels.key:value --max_results integer --format=prettyjson --project_id project_id

  • Batch load data from a specific file in formats such as CSV, JSON, Parquet, and Avro to a table:

bq load --location location --source_format CSV|JSON|PARQUET|AVRO dataset.table path_to_source

  • Copy one table to another:

bq cp dataset.OLD_TABLE dataset.new_table

  • Display help:

bq help

This document was created using the contents of the tldr project.